COMBAI computational biology and artificial intelligence

Longevity secret: Noncoding RNAs evolutionarily extend animal lifespan

Want to know more detail about how noncoding RNAs extend lifespan? Clink here to read the manscript

The mechanisms underlying lifespan evolution in organisms have long been mysterious. However, recent studies have demonstrated that organisms evolutionarily gain noncoding RNAs (ncRNAs) that carry endogenous profound functions in higher organisms, including lifespan. This study unveils ncRNAs as crucial drivers driving animal lifespan evolution. Species in the animal kingdom evolutionarily increase their ncRNA length in their genomes, coinciding with trimming mitochondrial genome length. This leads to lower energy consumption and ultimately lifespan extension. Notably, during lifespan extension, species exhibit a gradual acquisition of long-life ncRNA motifs while concurrently losing short-life motifs. These longevity-associated ncRNA motifs, such as GGTGCG, are particularly active in key tissues, including the endometrium, ovary, testis, and cerebral cortex. The activation of ncRNAs in the ovary and endometrium offers insights into why women generally exhibit longer lifespans than men. This groundbreaking discovery reveals the pivotal role of ncRNAs in driving lifespan evolution and provides a fundamental foundation for the study of longevity and aging.

References

Anyou Wang.Noncoding RNAs evolutionarily extend animal lifespan.2023